
RISK MANAGEMENT • DERIVATIVES • REGULATION

REPRINTED FROM

Market-making by a 
foreign exchange dealer

Risk.net September 2022 Cutting edge



Cutting edge: Foreign exchange

1 risk.net

Cutting edge: Foreign exchange

Market making by a foreign exchange
dealer
Dealers make money by providing liquidity to clients but face flow uncertainty and thus price risk. They can efficiently skew their prices and
wait for clients to mitigate risk (internalisation), or trade with other dealers in the open market to hedge their position and reduce their
inventory (externalisation).Alexander Barzykin, Philippe Bergault and Olivier Guéant propose an optimal control framework for market
making that tackles both pricing and hedging, thus answering a question well known to dealers: to hedge or not to hedge?

W ithmore thanUS$6 trillion of trading turnover per day, the for-
eign exchange market is the largest financial market, far ahead
of that of bonds and stocks. In spite of its size and the concen-

tration of trading in a few financial global hubs, forex remains a highly frag-
mented over-the-counter (OTC) market with, on one side, a dealer-to-client
(D2C) segment where dealers/market makers provide liquidity to clients and,
on the other, a dealer-to-dealer (D2D) or interdealer segment where dealers
trade together, mainly for hedging purpose.

Market makers in forex cash markets provide liquidity to customers by
proposing prices at which they are ready to buy and sell currency pairs
through electronic price streams, single-bank platforms, multi-bank plat-
forms, etc. As a consequence of the trading flow from their clients, they have
to manage risky positions. They can have two different behaviours: hold-
ing the risk until other clients come to offset it (internalisation) or hedging
the risk out by trading on the D2D segment (externalisation). Externalisa-
tion allows market makers to get rid of the risk, but it usually comes at a
cost, that of crossing the bid-ask spread and sometimes walking the book
on platforms such as EBS (part of CME Group) or Refinitiv (depending
on the currency pair). Furthermore, externalisation usually induces a mar-
ket impact because trades become visible to more market participants. Inter-
nalisation allows market makers to avoid market impact, or at least reduce
it, but this is of course risky for the market maker because the price might
evolve adversely before the trading flow compensates the current position.
The risk can be reduced by skewing prices to attract the flow in the required
direction, but the flow is by no means guaranteed. In practice, most market
makers both internalise and externalise, depending on the market conditions
(an increase in volatility increases the propensity to externalise) and their
positions (dealers usually externalise beyond a certain position limit).

The latest Bank for International Settlements (BIS) Triennial Survey doc-
umented the growing prevalence of internalisation and the resulting decline
of the D2D segment (see Schrimpf & Sushko 2019). However, the trade-
off between internalisation and externalisation has attracted little academic
interest until recently. In fact, most of the models proposed in the literature
on optimal OTC market making have assumed no way to hedge out the risk
through the interdealer segment of the market. In the paper by Ho & Stoll
(1981) and in the recent literature (see Cartea et al (2015) andGuéant (2016)
for an overview) on optimal market making that followed the publication of
Avellaneda & Stoikov (2008), the market maker is indeed ‘only’ proposing
bid and ask quotes.1 One of the rare references to the internalisation versus

1 Some of these papers did not address OTC markets specifically but the models
they proposed are more adapted to OTC markets than stock markets, which are
mainly organised around all-to-all limit order books.

externalisation dilemma is Butz & Oomen (2019), which discusses inter-
nalisation on the basis of queuing theory and derives typical internalisation
horizons.

In Barzykin et al (2021), we proposed a model of algorithmic market
making with pricing and hedging that constitutes an important and natu-
ral encounter between two problems that have attracted a lot of academic
and practitioner interest in the last decade: optimal market making and opti-
mal execution.2 The model allows us to set an optimal pricing ladder and
determine optimal hedging rate in external liquidity pools as functions of
the inventory, risk aversion and market-driven parameters. In particular, we
proved the existence of a pure flow internalisation area, or equivalently, an
inventory threshold below which it is optimal for the dealer not to exter-
nalise. This threshold is derived from a subtle balance between uncertainty,
execution costs and market impact.

In this paper, we generalise our algorithmic market-making model further
to better model the trading flow. In particular, we introduce tiers used by
market makers to distinguish both the different sources of the trading flow
and the natural diversity of the clients. We describe below our modelling
approach to the trading flow and show how to estimate the intensity param-
eters. We demonstrate that tiers can be conveniently defined using clustering
techniques on intensity parameters.We then present our algorithmic market-
making model and look into the differences in the optimal strategies for dif-
ferent tiers. By analysing the typical risk-neutralisation time and internal-
isation ratio derived from the model as functions of the dealer’s risk aver-
sion we recover figures consistent with those of Butz & Oomen (2019) and
Schrimpf & Sushko (2019). Finally, we discuss the dealer’s efficient frontier
and comment on the choice of the risk aversion parameter.

Understanding trading flow
One of the central issues for a dealer is inventory management. Indeed, a
dealer must, at all times, decide whether they wish to warehouse the risk
while waiting for the arrival of future customer flows or if they wish to hedge
part of it by trading on the D2Dmarket.This decision obviously depends on
price risk but also on customer flow. Furthermore, when the market maker
decides to hold risk (internalisation), they skew prices in order to increase
or decrease the flow of buying or selling customers, depending on the sign
of the inventory. Understanding trading flow and customers’ sensitivity to
streamed prices is therefore essential.

2 For an introduction to optimal execution problems, we refer the reader to Alm-
gren & Chriss (2001) as well as Cartea et al (2015) and Guéant (2016).
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In order to model customer flow as a function of streamed prices, let
us introduce first a reference price process .St /t . Following the industry
standard, we take the firm primary mid-price as the reference price at any
point in time (EBS for our examples with EUR/USD).3 Given a streamed
pricing ladder at the bid (respectively, ask/offer) modelled by Sb.t; z/ D

St .1 � ıb.t; z// (respectively, Sa.t; z/ D St .1 C ıa.t; z//), where z > 0

is the size of the trade,4 we assume that buy (respectively, sell) trades5 of size
in Œz; z C dz� arrive over the infinitesimal interval Œt; t C dt � with probabil-
ity �b.z; ıb.t; z// dz dt (respectively, �a.z; ıa.t; z// dz dt ). In practice,
dealers propose pricing ladders for a set fzk ; 1 6 k 6 Kg of sizes. In what
follows, K D 6 sizes are considered, corresponding to 1, 2, 5, 10, 20 and
50million euros, respectively. As a consequence, the measures�b=a.z; ı/ dz

are approximated by discrete measures
PK

kD1 �
b=a
k

.ı/1zk
.dz/ (where

1zk
.dz/ is the Dirac measure in zk). Hereafter, the functions�

b=a
k

are called
intensity functions or simply intensities.

For an anonymised sample of HSBC’s forex streaming clients6 trading
EUR/USD we obtained access to tables of trades and quotes over the period
from January to April 2021.7 For the purpose of our study, quotes on the
bid and ask sides can be summed up, for each size zk , by a list of couples
..ıj ; �j //

j 2Jb=a
k

, where ıj is a streamed quote for size zk and �j is the asso-
ciated duration of that quote. Trades are not all of sizes fzk ; 1 6 k 6 Kg

but we can associate each trade with the closest zk and the trade data can
then be aggregated, for the bid and ask sides and for each size zk , by a list of
quotes .ıi /i2Ib=a

k

.
It is easy to show that the loglikelihoods LLb=a

k
associated with the bid

and ask sides for size zk are (up to an additive constant):

LLb=a
k

D

X

i2Ib=a
k

log.�
b=a
k

.ıi // �

X

j 2Jb=a
k

�
b=a
k

.ıj /�j

D I
b=a
k

Z

ı
log.�

b=a
k

.ı//f
b=a;T

k
.dı/ � N�

Z

ı
�

b=a
k

.ı/f
b=a;Q

k
.dı/

where f
b=a;T

k
.dı/ is the probabilitymeasure of bid/ask trades bucketed with

size zk , f
b=a;Q

k
.dı/ is the probability measure of streamed quotes (weighted

with durations) at the bid/ask for size zk and N� D
P

j 2Jb=a
k

�j is the total
duration of the time window.

Intensity functions can be interpreted in the following two-step fashion.
First, there is a given flow of prospective customers who look at the prices.
The probability that they trade then depends on the quotes proposed by
the dealer. Therefore, inspired by logistic regression techniques, a natural
functional form is:

�
b=a
k

.ı/ D
�

b=a
k

1 C e˛
b=a
k

Cˇ
b=a
k

ı

3The notion of reference price can be obscure in the case of forex due to the sig-
nificant geographical delocalisation of liquidity and last look practice (see Oomen
2017). The true market price can only be known with limited accuracy. Never-
theless, the primary venue provides a reliable measurable reference, suitable for
the purpose of this analysis.
4Throughout, we shall use the term quote for ıb=a although it is only a mark-up
or a discount with respect to the reference price.
5We take the dealer’s viewpoint when it comes to trade sides.
6This sample is sufficiently diverse to provide realistic results, but by no means
complete enough to fully represent the HSBC forex market-making franchise.
7 In what follows, we focused only on the most liquid hours.

1 Trade (green) and streamed quote (red) frequency histograms and
smoothed probability density functions (associated with f T

1 .dı/ and
f Q
1 .dı/) for a client chosen at random in our sample and trades of €1M

(right axis) along with the corresponding estimated intensity function
(blue, left axis) (normalised to a maximum of 1)
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where �
b=a
k

represents the flow of prospective customers and the term
1=.1 C e˛

b=a
k

Cˇ
b=a
k

ı / represents the probability of trading given the quotes
proposed. By using a maximum likelihood approach, we can easily estimate
the parameters, ie, for each k:

.�
b=a
k

; ˛
b=a
k

; ˇ
b=a
k

/

2 argmax
�

I
b=a
k

Z

ı
log

�
�

b=a
k

1 C e˛
b=a
k

Cˇ
b=a
k

ı

�
f

b=a;T
k

.dı/

� N�

Z

ı

�
b=a
k

1 C e˛
b=a
k

Cˇ
b=a
k

ı
f

b=a;Q
k

.dı/

�

While carrying out the above estimation procedure on individual clients,
we noticed that intensities on the bid and ask sides were not significantly dif-
ferent. Therefore, we assumed �b

k
.ı/ D �a

k
.ı/ D �k.ı/. This assumption

enabled us to achieve more precise estimations since bid and ask tables could
then be concatenated and the loglikelihoods added. For the examples in this
paper, we therefore fitted the functions:

�k.ı/ D
�k

1 C e˛kCˇkı

by choosing, for each k:

.�k ; ˛k ; ˇk/ 2 argmax
�

Ik

Z

ı
log

�
�k

1 C e˛kCˇkı

�
f T

k
.dı/

� 2 N�

Z

ı

�k

1 C e˛kCˇkı
f Q

k
.dı/

�

where:

Ik D I b
k

C I a
k

; f T
k

D
I b

k
f

b;T
k

C I a
k

f
a;T

k

I b
k

C I a
k

; f Q
k

D
f

b;Q
k

C f
a;Q

k

2

The results for z1 D €1 million are shown in figure 1 for a single client
chosen at random in our sample. We do not display the scale (ie, �1) as only
the shape is important.
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2 Normalised intensity functions for the two client tiers (Tier 1 is in blue
and Tier 2 in green)
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Tiers are identified using a standard k-means procedure on individually fitted
intensity parameters for the sample of clients considered in the paper and trades of
€1M (inset)

Figure 2 collects .˛1; ˇ1/ parameters for all clients in the sample. Two
clusters are clearly visible, justifying the creation of tiers. The intensity func-
tions corresponding to the two tiers (estimated on pooled data for each tier
using the same maximum likelihood approach as above) are shown as well.
We can observe significantly different price sensitivities across the two tiers.
The respective parameters are (after rounding) ˛1

1 D �0:3 and ˇ1
1 D 5 per

basis point forTier 1 and ˛2
1 D �1:9 and ˇ2

1 D 15bp�1 forTier 2.This cor-
relates well with recent findings on informativeness and trading behaviour of
typical forex OTCmarket participants, with the different pricing sensitivities
of different types of clients driven by significantly different business horizons,
risk management requirements and information access (Ranaldo & Somogyi
2021).

For other sizes, the shape parameters were found to be consistent with
the results for trades of €1M. .�1; : : : ; �6/ have been rounded and found
proportional to .0:4; 0:25; 0:19; 0:1; 0:05; 0:01/ for both tiers.We therefore
define throughout the paper the parameters ˛1 D �0:3 and ˇ1 D 5bp�1

for Tier 1 and ˛2 D �1:9 and ˇ2 D 15bp�1 for Tier 2.

The market-making model for multiple tiers
Let us now examine themarket-makingmodel. In the general case, we denote
by N the number of tiers (N D 2 in our examples). The market maker
streams a pricing ladder for each tier: for Tier n 2 f1; : : : ; N g they propose
a pricing ladder Sb;n.t; z/ D St .1�ıb;n.t; z// at the bid and Sa;n.t; z/ D

St .1Cıa;n.t; z// at the ask.The associated intensities forTier n are denoted
by �b;n and �a;n, respectively. Following the above empirical results, we
assume that the functions �b;n and �a;n have the form:8

�b;n.z; ı/ D �a;n.z; ı/ D �n.z; ı/ D �n.z/f n.ı/

with f n.ı/ D
1

1 C e˛nCˇnı

8Generalisations are of course straightforward.

The market maker can also trade on a platform to hedge their position.
The execution rate of the market maker on this platform is modelled by a
process .vt /t .

We assume the dynamics of the reference price has two parts: an exoge-
nous part with classical lognormal dynamics and an endogenous part cor-
responding to the permanent market impact of the market maker’s trades
on the platform (ie, when they externalise). Mathematically, .St /t has the
dynamics:

dSt D �St dWt C kvt St dt

where .Wt /t is a standard Brownian motion, k represents the magnitude of
the (linear) permanent impact and � is the volatility parameter.

We denote by .qt /t the inventory process of the market maker resulting
from trades with clients and trades on the platform. Mathematically, denot-
ing by J b;n.dt; dz/ and J a;n.dt; dz/ the random measures modelling the
times and sizes of trades with Tier n on the bid and ask sides, respectively,
the dynamics of .qt /t is given by

dqt D

NX
nD1

Z 1

zD0
zJ b;n.dt; dz/ �

NX
nD1

Z 1

zD0
zJ a;n.dt; dz/ C vt dt:

The resulting cash process .Xt /t of the market maker can be written as:

dXt D

NX
nD1

Z 1

zD0
Sa;n.t; z/zJ a;n.dt; dz/

�

NX
nD1

Z 1

zD0
Sb;n.t; z/zJ b;n.dt; dz/ � vt St dt � L.vt /St dt

where the term L.vt /St accounts for the execution costs.9

The market maker wants to maximise the expected mark-to-market value
of their portfolio at the end of the period Œ0; T � while managing the risk
associated with their inventory. Mathematically, we assume that they want
to maximise:

E
�
XT C qT ST �

C

2

Z T

0
q2

t dŒS�t

�

by choosing ıb;n, ıa;n and v, where the respective importance of the
expected profit and loss (P&L) and risk management components can be
chosen through the coefficient C > 0. This is a standard objective function
discussed in the market-making literature.10 Market share is also often tar-
geted by dealers, and this could be part of a more general multi-objective
optimisation problem, but P&L and risk will always remain at the core.

Applying Itô’s formula to the process .Xt C qt St /t allows us to see that
this problem is equivalent to maximising:

E
� Z T

0

� NX
nD1

Z 1

0
.zıb;n.t; z/�n.ıb;n.t; z//

C zıa;n.t; z/�n.ıa;n.t; z///St dz

C kqt vt St � L.vt /St �
C

2
�2q2

t S2
t

�
dt

�

9 L is typically nonnegative, strictly convex and asymptotically superlinear.
10 A terminal penalty can be introduced on the residual inventory at time T .
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As T is chosen small in what follows, it makes sense to approximate St by
S0 in the expression above, and the problem becomes that of maximising:

E
� Z T

0

� NX
nD1

Z 1

0
.zıb;n.t; z/�n.ıb;n.t; z//

C zıa;n.t; z/�n.ıa;n.t; z/// dz

C kqt vt � L.vt / �
�

2
�2q2

t

�
dt

�

where � D CS0 is analogous to the risk aversion parameter in most models
in the market-making literature.

We denote by � W Œ0; T � � R ! R the value function of this stochastic
control problem. The Hamilton-Jacobi equation associated with it is:

0 D @t �.t; q/ �
�

2
�2q2

C

NX
nD1

Z 1

0
zH n

�
�.t; q/ � �.t; q C z/

z

�
�n.z/ dz

C

NX
nD1

Z 1

0
zH n

�
�.t; q/ � �.t; q � z/

z

�
�n.z/ dz

C H.@q�.t; q/ C kq/ 8.t; q/ 2 Œ0; T / � R

with terminal condition �.T; �/ D 0, where:

H n
W p 2 R 7! sup

ı

f n.ı/.ı � p/

H W p 2 R 7! sup
v

.vp � L.v//

Under mild assumptions (see Bergault & Guéant (2021) for similar
results), it can be proved that, given a smooth solution to the above Hamil-
ton-Jacobi equation, the optimal controls are given by:11

ıb;n�.t; z/ D Nın

�
�.t; qt�/ � �.t; qt� C z/

z

�

ıa;n�.t; z/ D Nın

�
�.t; qt�/ � �.t; qt� � z/

z

�

and:
v�

t D H 0.@q�.t; qt�/ C kqt�/

where Nın.p/ D .f n/�1.�H n0.p//.

Numerical results and discussion
To illustrate the optimal market-making strategy, let us focus on the case of a
typical top-tier bank dealer on EUR/USD. Regarding size buckets, client tier-
ing and the shape of intensities, we used the same parameters as in the above
study of the trading flow on a sample of HSBC clients. Regarding intensity
amplitudes, we set .�1; : : : ; �6/ D � � .0:4; 0:25; 0:19; 0:1; 0:05; 0:01/ for
both tiers, with � D 1;800 day�1. This figure was chosen so that, using the
optimal strategy, the trading flow is of the same order ofmagnitude as the esti-
mation proposed in Butz & Oomen (2019) (see also the BIS data (Schrimpf

11 .qs/s is a càdlàg (right continuous with left limits) process and we write the
left limit of the process q at time t as qt� D lims"t qs .

3 Optimal bid ladder for Tier 1 (blue): �ıb;1�.0; z/ as a function of q0�

for z 2 fz1; : : : ; z6g
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Optimal ask ladder for Tier 2 (green): ıa;2�.0; z/ as a function of q0� for
z 2 fz1; : : : ; z6g. Optimal external hedging rate (orange): v�

0 as a function of
q0�. Risk aversion parameter: � D 2 � 10�3bp�1

� .M€/�1

& Sushko 2019)). We obtained approximately €10 billion of daily turnover
(the estimation in Butz & Oomen (2019) was US$7.32M/min).12

As far as the execution cost and market impact parameters are concerned,
we used standard estimation techniques on a sample of HSBC execution data
and chose (after rounding):
� L W v 2 R 7! �v2 C �jvj with � D 10�5bp � day � .M€/�1 and
� D 0:1bp.
� Permanent market impact: k D 5 � 10�3bp � .M€/�1.
We set the volatility to � D 50bp �day�1=2 and considered a time horizon

T D 0:05 days (72 minutes), which ensures convergence towards stationary
quotes and hedging rates at time t D 0 (see more on convergence in Barzykin
et al (2021)). In order to approximate the value function � , we added bound-
ary conditions by imposing that no trade that would result in an inventory
jqj > €250million is admitted, and used a monotone implicit Euler scheme
on a grid with 501 points for the inventory.

Figure 3 summarises optimal pricing and hedging strategies for the above
set of parameters and risk aversion of � D 2 � 10�3bp�1

� .M€/�1.13

There are several interesting features worth noting. First, we observe a range
of inventory around zero, where the dealer will only internalise by skewing
the quotes, ie, no hedging. We call this interval the pure flow internalisation
area. Since L.v/ D �v2 C �jvj implies that:

H 0.p/ D
1

2�
sgn.p/ max.0; jpj � �/

12Note that the maximum daily turnover corresponding to these parameters is
approximately €31 billion. However, the dealer can only hypothetically reach
this level by quoting far better prices than the mid-price and losing money.
13Due to the assumption of flow symmetry, it suffices to plot only bid or ask
quotes for each tier, as the other side would be a mirror image. We decided to
plot �ıb;1�.0; z/ as a function of q0� for z 2 fz1; : : : ; z6g for Tier 1 and
ıa;2�.0; z/ as a function of q0� for z 2 fz1; : : : ; z6g for Tier 2.
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4 Inventory threshold of the pure flow internalisation area for different
levels of risk aversion (� ), volatility (� ), franchise size (�), execution costs
(�) and permanent market impact (k)
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The top panel scales against �=.��2/ with the varying parameter colour coded,
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we have H 0.p/ D 0 () jpj 6 �. Given the expression for the
optimal controls, the pure flow internalisation area corresponds to the set
of inventories q verifying:

j@q�.0; q/ C kqj 6 �

which contains 0 plus an interval around 0 (as soon as �.0; �/ is continuously
differentiable). In terms of sensitivity to the parameters, we noticed empiri-
cally (in line with intuition) a wider pure flow internalisation area for a less
risk-averse market maker with a larger franchise, exposed to higher execution
costs and market impact and in a less volatile market (see figure 4). We also
note that the optimal execution rate curve is almost linear with respect to
inventory outside of the pure flow internalisation area. Second, the bid-ask
spread is driven by the flow signature, leading to different pricing strategies
for the two tiers we considered. Our estimation of the inventory-neutral top-
of-book bid-ask spread (ie, the difference between the ask and bid prices for a

5 Traded volume fraction executed with Tier 1 and Tier 2 clients and
externally for hedging purpose (bars: Tier 1 is in blue, Tier 2 is in green,
external trading is in orange)
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T D 10 days for a market maker following the stationary optimal strategy

notional of €1M) for price-sensitive clients is 0.26bp, while for less sensitive
clients it is 0.55bp. This compares well with an average composite14 bid-ask
spread of 0.23bp and average primary venue bid-ask spread of 0.65bp at New
York open at the time of writing in early July 2021. This is particularly inter-
esting, as no market bid-ask spread was introduced into the model. We note
that the market maker’s OTC spread is mainly driven by the empirical shape
of the intensity function.

Once the optimal strategy has been computed, we can simulate the
behaviour of our market maker and assess the volume share of external hedg-
ing for different levels of dealer’s risk aversion. Figure 5 shows a span of four
orders of magnitude in � , illustrating the crossover from pure internalisa-
tion to significant externalisation. Note that the volume share of less price-
sensitive clients (Tier 1) remains basically the same while the dealer will prefer
to sacrifice price-sensitive flow (Tier 2) for the certainty of inventory man-
agement when risk aversion increases. The level of internalisation for a risk-
aware dealer is in line with BIS reporting around 80% internalisation in G10
currencies by top-tier banks.

Figure 5 also illustrates the dependence of the characteristic risk-neutral-
isation time �R on � , where �R is defined as the integral of the inventory
autocorrelation function. It appears that pure internalisation clearly comes
with a significantly higher risk. It is noteworthy that the value of �R for
� D 0:01 compares very well with the EUR/USD internalisation time
(1.39 minutes) estimated in Butz & Oomen (2019).

Figure 6 explores the optimal risk-reward trade-off. In order to obtain the
dealer’s efficient frontier by analogy withMarkowitzmodern portfolio theory,
we chose different values of the risk aversion parameter � and perturbed the
optimal strategy by randomly shifting bid and ask quotes for both tiers and
randomly choosing the width of the pure internalisation area and the slope
of the hedging rate curve around their optimal values.

14 An aggregated order book of multiple Electronic Communication Networks was
used.
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6 Expected P&L versus standard deviation of the P&L over time horizon
T D 0.05 days of a market maker following the stationary optimal
strategy with different values of the risk aversion parameter (solid line)
and 20 randomly perturbed strategies for each value of � (circles)

12

10

10 20 3025155

8

6

4

P
&

L
 (

k
$

)

Risk (k$)

Maximum expected P&L without risk management (dashed line). Results were
obtained by Monte Carlo simulation of 105 trajectories for several values of �

ranging from 10�4 to 10�1. The curve has been obtained with cubic splines

The resulting outcomes are almost all below the curve built using the opti-
mal stationary pricing and hedging strategy although our objective function
is not exactly a mean-variance one. Our penalty for inventory risk indeed
ignores part of the variance (see the discussion on objective functions for
market making in Guéant (2016)), and random perturbations could occa-
sionally end up being above the curve,15 but our approach appears to be a
very good one from a risk-reward perspective.

It must be noted that there is a significant difference between the efficient
frontier of Markowitz modern portfolio theory and ours, in that the expected
P&L is bounded from above in our case. Figure 6 shows the maximum

15This may also be linked to finite sample statistics and to the use of the optimal
stationary strategy rather than the time-dependent one close to time T .
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expected P&L with no risk management. The simulated optimal curve satu-
rates at a lower value when � ! 0 because of the inventory limit we imposed
to build a grid-based finite difference scheme.

The choice of � ultimately rests with the dealer and it is clear that the
optimal risk-reward curve can be useful in making the decision if we want to
optimise a risk-adjusted financial performance measure such as Sharpe ratio.
Forex dealers often have other objectives than those purely based on risk-
adjusted financial performance. For instance, they often care about market
share. Although ourmodel does not include such a criterion, simulations sim-
ilar to those carried out above could help in choosing strategies that provide
good results even when additional criteria are taken into account.

Concluding remarks
We introduced and analysed numerically a model of optimal market making
incorporating fundamental risk controls: pricing ladders over a distribution
of sizes and client tiers as well as the rate of hedging in external markets.
The model has immediate practical application to foreign exchange where
the marketplace is significantly fragmented and dealers must continuously
solve the dilemma of whether to internalise or externalise their flow. We
described the relevant features of client flow, taking a typical EUR/USD fran-
chise as an example and showed how tiers and pricing ladders as a function
of size naturally arise from this analysis. The results obtained regarding bid-
ask spreads, risk-neutralisation times and internalisation ratios are consistent
with empirical data and publicly reported figures. �
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